TRANSMISSION OF SUBSTITUENT EFFECT ACROSS THE FURAN RING

A.BEŇO^a and A.KRUTOŠÍKOVÁ^b

^a Department of Analytical Chemistry, Comenius University, 816 31 Bratislava and ^b Department of Organic Chemistry,

Slovak Institute of Technology, 880 37 Bratislava 1

Received March 5th, 1976

Half-wave potential values, apparent dissociation constants and wavenumbers of IR spectral bands of substituted 3-(5-phenyl-2-furyl)acrylic and 3-arylacrylic acids were correlated with σ substituent constants. The transmission coefficients across the furan ring, π' , were calculated from the obtained reaction constants ϱ and compared with the values of π' found for other systems.

The coefficients of transmission across the furan ring, π' , were hitherto studied¹⁻⁶ and calculated mainly on the basis of the infrared spectra. In order to determine the values of π' also by other methods and to compare the results obtained by various approaches, we investigated 3-(5-aryl-2-furyl)acrylic acids *I*. These compounds contain several reactive centers (CH=CH, C=O, -OH) and therefore they are suitable not only for spectral but also for potentiometric and polarographic studies. The parameters of linear correlations for a given series can be thus calculated from a greater number of independent experimental values.

Substituted 3-phenylacrylic acids II were used as model compounds. From the method of preparation of the derivatives I and II we can assume that the double bond in all the studied derivatives has *trans*-configuration. The polarographic study of compounds I was based on results of previous studies^{7,8} in which 3-phenyl-acrylic acid and its analogues were reduced in aqueous-ethanolic solutions of Li₂SO₄ (ref.⁷) and in tetramethylammonium hydroxide⁸. In these media the multiple bond in the studied systems is reduced with two electrons in one step to give corresponding saturated derivatives.

Polarographic study of the compounds I and II has shown that the relationships $i = f(c, h^{1/2})$ are linear and pass through the origin indicating thus a diffusion character of the processes on the Hg-electrode. The $E_{1/2}$ values are affected by substituents and they are 40-80 mV more positive for the compounds I as compared with the values found for the compounds II. All the derivatives show in the supporting electrolyte (0·1M-LiCl) a well-developed cathodic wave of the value $n \cdot \alpha$ in the interval 0·9-1·1.

The pK_a values were determined from half-neutralisation points on the titration curves. The dissociation constants were calculated also numerically from the experimental values, using the relationship for a monobasic acid⁹

$$pK_{a} = pH + \log\left(c_{HA}/c_{A^{-}}\right),$$

where c_{HA} and c_{A-} is the stochiometric concentration of non-dissociated and dissociated acid, respectively. The measured values of v(C=O) were also used for the calculation of the coefficients π' .

TABLE I

Basic Polarographic Characteristics, Values of pK_a and Wavenumbers of Carbonyl Bands for the Series I and II, and the Corresponding Substituent Constants

No	v	EV	ila	pK _a		$w(CO) = am^{-1}$	
INO	^	$-L_{1/2}, v$	170	num.	graph.	v(CO), ciii	U
		3-(5	i-Aryl-2	-furyl)acryl	ic acids I		
1	4-OCH ₃	1.455	2.1	6.92	_	1 689	-0.27
2	4-CH ₃	1.442	2.2	6.80	_	1 690	-0.12
3	н	1.429	1.8	6.67	_	1 691	0.00
4	4-Cl	1.408	2.4	6.62	_	1 698	0.23
5	4-Br	1.412	1.5	6.63		1 695	0.23
6	3-Ci	1.402	2.0	6.20	_	1 698	0.37
7	3-CF ₃	1.387	2.2	6.46		_	0.43
8	3-CF ₃ , 4-Cl	1.373	1.8	6.52	_	_	0.66
9	4-NO ₂	<u> </u>		6.37	_	1 703	0.78
, ·			3-Ary	lacrylic acio	ds <i>II</i>		
1	4-CH,	1.520	2.7	5.62	5.58	1 688	-0.17
2	3,4-(OCH ₃) ₂	1.512	2.5	5.68	5.62	1 678	-0.14
3	н	1.201	2.9	5.45	5.48	1 692	0.00
4	3-OCH ₃	1.480	2.9	5.42	5.40	1 695	0.12
5	4-Cl	1.472	2.9	5.38	5.36	1 699	0.23
6	3-F	1.454	2.7	5.23	5.22	1 700	0.34
7	3-Cl	1.446	2.7	5.19	5.18	1 702	0.37
8	3,4-Cl ₂	1.417	2.7	5.07	5.10	1 706	0.60

Collection Czechoslov. Chem. Commun. [Vol. 42] [1977]

The polarographic characteristics, apparent pK_a values and wavenumbers of the C=O bands for the investigated compounds are summarised in Table I, together with the corresponding values of substituent constants, σ . The pK_a values for the compounds I are taken from ref.¹⁰. The half-wave potentials, dissociation constants and wavenumbers were plotted against σ substituent constants¹¹ affording good linear relationships for both series of compounds (Table II). Comparison of the reaction constants ρ obtained for the series I with those obtained for the series II shows a somewhat smaller influence of substituents across the furan ring in compounds I, π' , were calculated from the relationship $\pi' = \rho/\rho_0$, where ρ and ρ_0 are the reaction constants (slopes) for the series I and II. respectively. The extent of the damping effect of the furan ring is seen from Table III.

There is a good agreement between the results obtained by different methods (polarography, potentiometry and IR spectroscopy). The results of the present study

TABLE II Statistical Parameters of Linerar Relationships for Studied Series I and II

Parameter ^a	n	$\varrho \pm s_{ m p}$	$q\pm s_{ extsf{q}}$	r	\$
		Ser	ies I		
$E_{1/2}$	8	0.087 ± 0.004	$-1,429 \pm 0.002$	0.994	0.003
pK _a	9	0.458 ± 0.060	6.725 ± 0.045	0.945	0.060
v(CO)	7	$14{\cdot}098\pm1{\cdot}483$	$\begin{array}{ccc}1 \ 692 \cdot 5 & \pm \ 0 \cdot 655\end{array}$	0.973	1.290
		Seri	es II		
$E_{1/2}$	8	0.132 ± 0.004	-1.497 ± 0.002	0.996	0.003
pK _a	8	0.769 ± 0.063	$5{\cdot}505\pm0{\cdot}030$	0.980	0.045
ν(CO)	8	25.178 ± 1.370	1 691·0 ± 0·650	0.990	0.970

^a n Number of derivatives in the series, ρ slope and its error, q intercept and its error, r correlation coefficient, s standard deviation.

TABLE III

Values of Transmission Coefficients across the Furan Ring

also agree with the values obtained previously¹⁻⁶. Although the mean determined values of the transmission coefficients are higher than the calculated ones, they correspond to the assumption that the dependence of π' on the delocalisation energy of the system will have a partly linear character³.

EXPERIMENTAL

Materials and Equipment

The investigated substituted 3-(5-phenyl-2-furyl)acrylic¹⁰ and 3-arylacrylic¹² acids were prepared by Perkin synthesis. The IR absorption spectra were taken by a UR 20 (Zeiss, Jena) spectrophotometer, calibrated with a polystyrene foil. The acids were titrated on a Titrator TT (Radiometer, Copenhagen) using a glass G 202B electrode and a calomel K 401 electrode; accuracy ± 0.02 pH units. The mercury dropping electrode had dropping time $t_1 \ge 8$ (reservoir height h 60 cm, m 2·3 mg s⁻¹). The values of $E_{1/2}$ were measured against a non-polarised saturated calomel electrode (system of three electrodes), using a QTK-compensator (Metra, Blansko), accuracy ± 0.2 nW. Constant temperature was kept by a ultrathermostat Wobster U8 (Prüfgeräte, Mädingen–Dresden). The parameters of the linear correlations were calculated using the statistical relationships¹³ (Hewlett-Packard calculator 9100 B).

Methods

The polarographic measurements were performed in aqueous-ethanolic solutions at 20°C, supporting electrolyte 0-1M-LiCl, depolarisator concentration 0-25 mM. Values of the apparent dissociation constants, pK_a , were determined by potentiometric titration of aqueous-ethanolic (20 ml, 0-005M) solutions of the corresponding acids with 0-1M-NaOH at 25°C. All polarographic and potentiometric measurements were carried out under nitrogen; concentration of ethanol 50%. IR spectra were taken in 0-01M chloroform solutions.

REFERENCES

- 1. Perjessy A., Frimm R., Hrnčiar P.: This Journal 37, 3302 (1972).
- 2. Perjessy A., Hrnčiar P., Krutošíková A.: Tetrahedron 28, 1025 (1972).
- 3. Perjessy A., Hrnčiar P., Frim R., Fišera L.: Tetrahedron 28, 3781 (1972).
- 4. Perjessy A., Hrnčiar P., Sokolová R.: This Journal 38, 559 (1973).
- Perjessy A., Boykin D. W., Fišera L., Krutošíková A., Kováč J.: J. Org. Chem. 38, 1807 (1973).
- 6. Beňo A., Krutošíková A., Fišera Ľ., Frimm R.: This Journal 38, 2734 (1973).
- 7. Hanč O., Šantavý F.: Čas. Čes. Lékárn. 59, 40 (1946).
- 8. Patzak R., Neugebauer L.: Monatsh. Chem. 83, 776 (1952).
- 9. Albert A., Serjeant E. P.: Ionisation Constants of Acids and Bases. Wiley, New York 1962.
- 10. Krutošíková A., Surá J., Kováč J., Juhás S.: This Journal 40, 3362 (1975).
- 11. Jaffé H. H.: Chem. Rev. 53, 191 (1953).
- 12. Krutošíková A.: Unpublished results.
- 13. Eichler J.: Chem. Listy 60, 1203 (1966).

Translated by M. Tichý.